WHAM: A WENO-based general relativistic numerical scheme I: Hydrodynamics
نویسندگان
چکیده
Active galactic nuclei, x-ray binaries, pulsars, and gamma-ray bursts are all believed to be powered by compact objects surrounded by relativistic plasma flows driving phenomena such as accretion, winds, and jets. These flows are often accurately modelled by the relativistic magnetohydrodynamics (MHD) approximation. Timedependent numerical MHD simulations have proven to be especially insightful, but one regime that remains difficult to simulate is when the energy scales (kinetic, thermal, magnetic) within the plasma become disparate. We develop a numerical scheme that significantly improves the accuracy and robustness of the solution in this regime. We use a modified form of the WENO method to construct a finite-volume general relativistic hydrodynamics code called WHAM that converges at fifth order. We avoid (1) field-by-field decomposition by adaptively reducing down to 2-point stencils near discontinuities for a more accurate treatment of shocks, and (2) excessive reduction to low order stencils, as in the standard WENO formalism, by maintaining high order accuracy in smooth monotonic flows. Our scheme performs the proper surface integral of the fluxes, converts cell averaged conserved quantities to point conserved quantities before performing the reconstruction step, and correctly averages all source terms. We demonstrate that the scheme is robust in strong shocks, very accurate in smooth flows, and maintains accuracy even when the energy scales in the flow are highly disparate.
منابع مشابه
Ram: a Relativistic Adaptive Mesh Refinement Hydrodynamics Code
We have developed a new computer code, RAM, to solve the conservative equations of special relativistic hydrodynamics (SRHD) using adaptive mesh refinement (AMR) on parallel computers. We have implemented a characteristic-wise, finite difference, weighted essentially non-oscillatory (WENO) scheme using the full characteristic decomposition of the SRHD equations to achieve fifth order accuracy i...
متن کاملA New Multidimensional Relativistic Hydrodynamics code based on Semidiscrete Central and WENO schemes
We have proposed a new High Resolution Shock Capturing (HRSC) scheme for Special Relativistic Hydrodynamics (SRHD) based on the semidiscrete central Godunov-type schemes and a modified Weighted Essentially Non-oscillatory (WENO) data reconstruction algorithm. This is the first application of the semidiscrete central schemes with high order WENO data reconstruction to the SRHD equations. This me...
متن کاملRelativistic Flows Using Spatial and Temporal Adaptive Structured Mesh Refinement. I. Hydrodynamics
Astrophysical relativistic flow problems require high resolution three-dimensional numerical simulations. In this paper, we describe a new parallel three-dimensional code for simulations of special relativistic hydrodynamics (SRHD) using both spatially and temporally structured adaptive mesh refinement (AMR). We used method of lines to discrete SRHD equations spatially and used a total variatio...
متن کاملRunge-Kutta Central Discontinuous Galerkin Methods for the Special Relativistic Hydrodynamics
Abstract. This paper develops Runge-Kutta PK-based central discontinuous Galerkin (CDG) methods with WENO limiter to the oneand two-dimensional special relativistic hydrodynamical (RHD) equations, K = 1,2,3. Different from the non-central DG methods, the Runge-Kutta CDG methods have to find two approximate solutions defined on mutually dual meshes. For each mesh, the CDG approximate solutions o...
متن کاملEquation of State in Numerical Relativistic Hydrodynamics
Relativistic temperature of gas raises the issue of the equation of state (EoS) in relativistic hydrodynamics. We study the EoS for numerical relativistic hydrodynamics, and propose a new EoS that is simple and yet approximates very closely the EoS of the single-component perfect gas in relativistic regime. We also discuss the calculation of primitive variables from conservative ones for the Eo...
متن کامل